20 research outputs found

    THE TUROLIAN HIPPARIONS FROM CIOBURCIU SITE (REPUBLIC OF MOLDOVA): SYSTEMATICS AND PALEODIET

    Get PDF
    The Cioburciu hipparions, Republic of Moldova, are included in a Turolian assemblage, approximately dated between 9 and 7 million years. We assess herein their taxonomic position, systematics, biogeography and paleodietary habits. We have undertaken standard equid measurements as well as accessing the Vera Eisenmann website for measurements and images and analysed craniodental and postcranial elements. This assemblage has been determined to be of a medium-sized hipparion with an elongated muzzle, well developed preorbital fossa that is dorsoventrally extensive and placed close to the orbit, lacking a caninus fossa and having a prominent and deep buccinator fossa. As such, this assemblage is referable to Cremohipparion moldavicum Gromova 1952 common to the Western Ukraine, Balkans, Romania, Republic of Georgia, Turkey and Iran. We have employed a combination of gross cheek tooth wear morphology utilizing the mesowear method and a microscopic analysis of occlusal enamel scars utilizing the light microscope microwear technique. These complementary paleodietary methods indicate that these hipparions engaged in a mixed feeding dietary behavior and that the Cioburciu sample of C. moldavicum likely alternated its diet between browsing and grazing seasonally and/or regionally. A hierarchical cluster analysis based on average scratch and pit numbers positions this taxon among extant mixed feeding ungulates. Large pitting and gouging assessed through the microwear technique indicates occasional consumption of relatively coarser foods than typical mixed feeders or grazers or grit-laden food just prior to death while mesowear indicates that this was not a lifetime habit

    The Role of Grass vs. Exogenous Abrasives in the Paleodietary Patterns of North American Ungulates

    Get PDF
    Equids have often been discussed regarding tooth morphological change due to the evolution of highly hypsodont teeth over time, the hyper-grazing habits of modern horses, and an older view that the acquisition of hypsodonty and the widespread appearance of grasslands were synchronous. Many more recent studies, however, have reported asynchrony in the origin of hypsodonty and the widespread appearance of grasslands and have considered exposure to exogenous grit as important evolutionary drivers of hypsodonty in ungulates. We tracked changes in crown height (hypsodonty index), relative abrasion (mesowear), and food and grit scar topography on dental enamel (microwear) to examine the relative contributions of grass vs. grit as a driving force in ungulate tooth changes during the evolution of North American Equidae compared to four North American ruminant artiodactyl families (Camelidae, Antilocapridae, Dromomerycidae, and Merycoidodontidae). We mirror other studies by finding that the overall pattern of the timing of the attainment of hypsodonty is inconsistent with grazing as the main impetus for the “Great Transition” within equids nor within the artiodactyl families as highly hypsodont ungulates post-date the spread of widespread grasslands. Mesowear closely mirrored hypsodonty trends in all families. Microwear patterns, particularly high degrees of enamel pitting (particularly large pits) and unusually coarse scratch textures in all five families, are consistent with exposure to exogenous grit as the main driver of hypsodonty acquisition prior to the consumption of significant levels of grass. Equidae exhibited a wider array of dietary behavior than the other families through most of their evolutionary history. Even so, grass was a much more common dietary item for equids than for the other families, and when combined with exogenous grit, which was more accelerated from the early Miocene onward based on more pitting and coarser scratch textures, may explain the more extreme acquisition of hypsodonty in equids compared to the artiodactyl families studied and set the stage for the Equidae alone to become hypergrazers in the Recent

    Evolution of the Family Equidae, Subfamily Equinae, in North, Central and South America, Eurasia and Africa during the Plio-Pleistocene

    Get PDF
    Studies of horse evolution arose during the middle of the 19th century, and several hypotheses have been proposed for their taxonomy, paleobiogeography, paleoecology and evolution. The present contribution represents a collaboration of 19 multinational experts with the goal of providing an updated summary of Pliocene and Pleistocene North, Central and South American, Eurasian and African horses. At the present time, we recognize 114 valid species across these continents, plus 4 North African species in need of further investigation. Our biochronology and biogeography sections integrate Equinae taxonomic records with their chronologic and geographic ranges recognizing regional biochronologic frameworks. The paleoecology section provides insights into paleobotany and diet utilizing both the mesowear and light microscopic methods, along with calculation of body masses. We provide a temporal sequence of maps that render paleoclimatic conditions across these continents integrated with Equinae occurrences. These records reveal a succession of extinctions of primitive lineages and the rise and diversification of more modern taxa. Two recent morphological-based cladistic analyses are presented here as competing hypotheses, with reference to molecular-based phylogenies. Our contribution represents a state-of-the art understanding of Plio-Pleistocene Equus evolution, their biochronologic and biogeographic background and paleoecological and paleoclimatic contexts

    Evolution of the Family Equidae, Subfamily Equinae, in North, Central and South America, Eurasia and Africa during the Plio-Pleistocene

    Get PDF
    Studies of horse evolution arose during the middle of the 19th century, and several hypotheses have been proposed for their taxonomy, paleobiogeography, paleoecology and evolution. The present contribution represents a collaboration of 19 multinational experts with the goal of providing an updated summary of Pliocene and Pleistocene North, Central and South American, Eurasian and African horses. At the present time, we recognize 114 valid species across these continents, plus 4 North African species in need of further investigation. Our biochronology and biogeography sections integrate Equinae taxonomic records with their chronologic and geographic ranges recognizing regional biochronologic frameworks. The paleoecology section provides insights into paleobotany and diet utilizing both the mesowear and light microscopic methods, along with calculation of body masses. We provide a temporal sequence of maps that render paleoclimatic conditions across these continents integrated with Equinae occurrences. These records reveal a succession of extinctions of primitive lineages and the rise and diversification of more modern taxa. Two recent morphological-based cladistic analyses are presented here as competing hypotheses, with reference to molecular-based phylogenies. Our contribution represents a state-of-the art understanding of Plio-Pleistocene Equus evolution, their biochronologic and biogeographic background and paleoecological and paleoclimatic contexts. © 2022 by the authors.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Evolution of the Family Equidae, Subfamily Equinae, in North, Central and South America, Eurasia and Africa during the Plio-Pleistocene

    Get PDF
    Studies of horse evolution arose during the middle of the 19th century, and several hypotheses have been proposed for their taxonomy, paleobiogeography, paleoecology and evolution. The present contribution represents a collaboration of 19 multinational experts with the goal of providing an updated summary of Pliocene and Pleistocene North, Central and South American, Eurasian and African horses. At the present time, we recognize 114 valid species across these continents, plus 4 North African species in need of further investigation. Our biochronology and biogeography sections integrate Equinae taxonomic records with their chronologic and geographic ranges recognizing regional biochronologic frameworks. The paleoecology section provides insights into paleobotany and diet utilizing both the mesowear and light microscopic methods, along with calculation of body masses. We provide a temporal sequence of maps that render paleoclimatic conditions across these continents integrated with Equinae occurrences. These records reveal a succession of extinctions of primitive lineages and the rise and diversification of more modern taxa. Two recent morphological-based cladistic analyses are presented here as competing hypotheses, with reference to molecular-based phylogenies. Our contribution represents a state-of-the art understanding of Plio-Pleistocene Equus evolution, their biochronologic and biogeographic background and paleoecological and paleoclimatic contexts

    Maragheh ungulate mesowear: interpreting paleodiet and paleoecology from a diverse fauna with restricted sample sizes. Annales Zoologici Fennici 51

    No full text
    This study explores the extent to which researchers might be able to interpret a fauna's paleoecology using mesowear analysis on ungulate maxillary molars when there are diverse taxa represented by few specimens. We compared our mesowear results on Maragheh ungulates with those of extant ungulates and with known mesowear score distributions of the two classical Greek Pikermian faunas of Samos and Pikermi, and with the late Miocene of China. The Maragheh equid and bovid species display a range of dietary abrasiveness, whereas the giraffids and chalicothere have fairly abrasive mesowear signals. Despite small sample sizes for some taxa, our results are consistent with long-held taxon-based interpretations of Maragheh paleoecology: a Pikermian woodland habitat. In addition, our results are consistent with climatic changes of the Paratethyan realm at the end of the Miocene

    Data from: A tool for determining duration of mortality events in archaeological assemblages using extant ungulate microwear

    No full text
    The seasonality of human occupations in archaeological sites is highly significant for the study of hominin behavioural ecology, in particular the hunting strategies for their main prey-ungulates. We propose a new tool to quantify such seasonality from tooth microwear patterns in a dataset of ten large samples of extant ungulates resulting from well-known mass mortality events. The tool is based on the combination of two measures of variability of scratch density, namely standard deviation and coefficient of variation. The integration of these two measurements of variability permits the classification of each case into one of the following three categories: (1) short events, (2) long-continued event and (3) two separated short events. The tool is tested on a selection of eleven fossil samples from five Palaeolithic localities in Western Europe which show a consistent classification in the three categories. The tool proposed here opens new doors to investigate seasonal patterns of ungulate accumulations in archaeological sites using non-destructive sampling

    Data from: A tool for determining duration of mortality events in archaeological assemblages using extant ungulate microwear

    No full text
    The seasonality of human occupations in archaeological sites is highly significant for the study of hominin behavioural ecology, in particular the hunting strategies for their main prey-ungulates. We propose a new tool to quantify such seasonality from tooth microwear patterns in a dataset of ten large samples of extant ungulates resulting from well-known mass mortality events. The tool is based on the combination of two measures of variability of scratch density, namely standard deviation and coefficient of variation. The integration of these two measurements of variability permits the classification of each case into one of the following three categories: (1) short events, (2) long-continued event and (3) two separated short events. The tool is tested on a selection of eleven fossil samples from five Palaeolithic localities in Western Europe which show a consistent classification in the three categories. The tool proposed here opens new doors to investigate seasonal patterns of ungulate accumulations in archaeological sites using non-destructive sampling

    g23.dat

    No full text
    Boundary between region 2 (longer than seasonal mortality events) and region 3 (two separated mortality evens). The coordinates x (CV) and y (SD) of the points belonging to the curve have been calculated numerically for x in [0:1] and y in [0:10] and are reported in two columns with a space as separator. Since the curve is not continuous, there is a blank line separating the two branches
    corecore